LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION – **PHYSICS**

FOURTH SEMESTER – APRIL 2023

UMT 4402 – MATHEMATICS FOR PHYSICS - II

Dept. No. Date: 04-05-2023 Time: 09:00 AM - 12:00 NOON

PART - A

Answer ALL questions.

- 1. Define odd and even functions.
- Obtain the Fourier coefficient a_0 for the function $f(x) = \frac{1}{2}(\pi x)$ in the interval 0 to 2π . 2.
- Given a real-life situation that can be transformed into a differential equation. 3.
- 4. Prove that $(a^2 2xy y^2)dx (x + y)^2dy = 0$ is an exact equation.
- 5. Solve: $(D^2 + 5D + 4)y = 0$
- 6. Obtain the particular solution of $(D^2 + 2D + 1)y = e^{2x}$.
- 7. Find $L(t^2 + 2t)$.
- 8. Find $L^{-1}\left(\frac{1}{s^2+4}\right)$.
- 9. When do you say that a vector is irrotational?
- 10. State Gauss divergence theorem.

<u> PART - B</u>

Answer any FIVE questions.

- 11. Find a sine series expansion of f(x) = c in the range 0 to π .
- 12. Solve: $\frac{dy}{dx} + y \cos x = \frac{1}{2} \sin 2x$
- 13. Use the method of variation of parameters to solve $\frac{d^2y}{dx^2} + 4y = tan 2x$.
- 14. Find $L(te^{-t}sint)$.

15. Evaluate $\iint_S \vec{A} \cdot \hat{n} \, dS$ if $\vec{A} = (x + y^2)\vec{i} - 2x\vec{j} + 2yz\vec{k}$ and S is the surface of 2x + y + 2z = 6 in the first octant.

- 16. Express $f(x) = x, -\pi < x < \pi$ as a Fourier expansion.
- 17. Solve: $x\sqrt{1+y^2}dx + y\sqrt{1+x^2}\frac{dy}{dx} = 0$

18. Find the directional derivative of $\Phi(x, y, z) = 3x^2 + 2y - 3z$ at the point (1, 1, 1) in the direction specified by $2\vec{\imath} + 2\vec{\jmath} - \vec{k}$.

Max.: 100 Marks

 $(5 \times 8 = 40 \text{ marks})$

(10 x 2 = 20 marks)

PART - C

 $(2 \times 20 = 40 \text{ marks})$

Answer any TWO questions.

19. Express f(x) = x² as Fourier series with period 2π to be valid in the interval -π to π. Hence deduce that (i) ¹/_{1²} + ¹/_{2²} + ¹/_{3²} + = ^{π²}/₆, (ii) ¹/_{1²} - ¹/_{2²} + ¹/_{3²} - = ^{π²}/₁₂.
20. a) Solve: y² + x² ^{dy}/_{dx} = xy ^{dy}/_{dx}
b) Solve: (D² + 4D + 4)y = e^x + cos 2 x
21. a) Obtain the inverse Laplace transform of ¹/_(s²+4s+5).
b) Using Laplace transform, solve ^{d²y}/_{dt²} + 2 ^{dy}/_{dt} - 3y = sint, y = ^{dy}/_{dt} = 0 when t = 0.

22. Verify Green's theorem in the XY plane for $\int_C \{(3x - 8y^2)dx + (4y - 6xy)dy\}$ where C is the boundary of the region given that x = 0, y = 0, x + y = 1.