LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - PHYSICS FOURTH SEMESTER - APRIL 2023

UMT 4402 - MATHEMATICS FOR PHYSICS - II

Date: 04-05-2023
Time: 09:00 AM - 12:00 NOON
Dept. No. \square

PART - A

Answer ALL questions.
($10 \times 2=20$ marks $)$

1. Define odd and even functions.
2. Obtain the Fourier coefficient a_{0} for the function $f(x)=\frac{1}{2}(\pi-x)$ in the interval 0 to 2π.
3. Given a real-life situation that can be transformed into a differential equation.
4. Prove that $\left(a^{2}-2 x y-y^{2}\right) d x-(x+y)^{2} d y=0$ is an exact equation.
5. Solve: $\left(D^{2}+5 D+4\right) y=0$
6. Obtain the particular solution of $\left(D^{2}+2 D+1\right) y=e^{2 x}$.
7. Find $L\left(t^{2}+2 t\right)$.
8. Find $L^{-1}\left(\frac{1}{s^{2}+4}\right)$.
9. When do you say that a vector is irrotational?
10. State Gauss divergence theorem.

PART - B

Answer any FIVE questions.

11. Find a sine series expansion of $f(x)=c$ in the range 0 to π.
12. Solve: $\frac{d y}{d x}+y \cos x=\frac{1}{2} \sin 2 x$
13. Use the method of variation of parameters to solve $\frac{d^{2} y}{d x^{2}}+4 y=\tan 2 x$.

14 . Find $L\left(t e^{-t} \sin t\right)$.
15. Evaluate $\iint_{S} \vec{A} \cdot \hat{n} d S$ if $\vec{A}=\left(x+y^{2}\right) \vec{\imath}-2 x \vec{\jmath}+2 y z \vec{k}$ and S is the surface of $2 x+y+2 z=6$ in the first octant.
16. Express $f(x)=x,-\pi<x<\pi$ as a Fourier expansion.
17. Solve: $x \sqrt{1+y^{2}} d x+y \sqrt{1+x^{2}} \frac{d y}{d x}=0$
18. Find the directional derivative of $\Phi(x, y, z)=3 x^{2}+2 y-3 z$ at the point $(1,1,1)$ in the direction specified by $2 \vec{\imath}+2 \vec{\jmath}-\vec{k}$.
19. Express $f(x)=x^{2}$ as Fourier series with period 2π to be valid in the interval $-\pi$ to π. Hence deduce that (i) $\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\ldots \ldots=\frac{\pi^{2}}{6}$, (ii) $\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\ldots \ldots=\frac{\pi^{2}}{12}$.
20. a) Solve: $y^{2}+x^{2} \frac{d y}{d x}=x y \frac{d y}{d x}$
b) Solve: $\left(D^{2}+4 D+4\right) y=e^{x}+\cos 2 x$
21. a) Obtain the inverse Laplace transform of $\frac{1}{\left(s^{2}+4 s+5\right)}$.
b) Using Laplace transform, solve $\frac{d^{2} y}{d t^{2}}+2 \frac{d y}{d t}-3 y=\sin t, y=\frac{d y}{d t}=0$ when $t=0$.
22. Verify Green's theorem in the $X Y$ plane for $\int_{C}\left\{\left(3 x-8 y^{2}\right) d x+(4 y-6 x y) d y\right\}$ where C is the boundary of the region given that $x=0, y=0, x+y=1$.

